

Patrocínio, MG, novembro de 2024

PROJETO, MONTAGEM E TESTES DE UMA CARGA ELETRÔNICA ATIVA PARA TESTES DE EQUIPAMENTOS DE CONVERSORES CHAVEADOS DE POTÊNCIA

Leandro José Rocha Rafael Oliveira Leandro Sousa Vilefort Instituto Federal do Triângulo Mineiro Modalidade: Pesquisa Formato: Artigo Completo

Resumo:

Este trabalho detalha o desenvolvimento de um protótipo de carga eletrônica ativa para testes de conversores chaveados de potência. O circuito é baseado em um amplificador operacional (AO) configurado como fonte de corrente controlada por tensão, utilizando um MOSFET na malha de realimentação. Com uma faixa de controle de corrente de 0 a 10 A, a corrente drenada do equipamento de teste é mantida constante, independentemente das variações na tensão de entrada, desde que estejam dentro dos limites operacionais estabelecidos. O conversor proposto será utilizado para validar o desempenho e a estabilidade dos conversores em diferentes condições de operação, permitindo traçar curvas de desempenho e eficiência. Durante o desenvolvimento, foram realizadas simulações e experimentos, cujos resultados demonstraram a linearidade entre a tensão de controle e a corrente na carga. O circuito esquemático e o roteamento da placa serão apresentados, assim como as limitações do projeto, incluindo a dissipação térmica e a necessidade de ventilação forçada para aumentar os limites de operação. Discussões sobre possíveis melhorias e aplicações futuras também serão abordadas. Este estudo contribui para a compreensão e aprimoramento de cargas eletrônicas ativas, oferecendo uma alternativa às cargas passivas tradicionais, que apresentam desvantagens em termos de espaço e possibilidades de controle.

Palavras-chave: Carga ativa; fonte de corrente; controle de corrente; conversores CC-CC.

1 – INTRODUÇÃO

Nos processos de desenvolvimento e fabricação de conversores eletrônicos de potência, são realizados longos testes para obter resultados experimentais em diferentes condições de operação, visando validar desempenho, estabilidade e traçar curvas de operação e eficiência. Além disso, também são realizados testes operando sob condições nominais por várias horas ou dias, com o intuito de detectar falhas prematuras, conhecidos como testes de *Burn-in*. Para simular essas condições de carga, geralmente são utilizadas

cargas dissipativas, como bancos de resistores. Essas cargas ocupam um grande espaço físico e geram bastante calor, especialmente quando a potência total dos equipamentos em teste é mais elevada.

No entanto, ao variar linearmente o valor da resistência de carga, mantida tensão de saída constante, a corrente e a potência na carga apresentam variações não lineares. Para contornar essa questão, o uso de cargas ativas surge como uma alternativa viável, uma vez que, ao ajustar a corrente de forma linear, a potência na carga também varia linearmente, facilitando a coleta de dados para o traçado de curvas de operação do conversor.

Carga Eletrônica Ativa (CEA) é um equipamento eletrônico capaz de se comportar de forma equivalente a uma carga passiva, em termos de amplitude, formato e defasagem da corrente drenada do equipamento que está sob ensaio. O termo "ativo" significa que possui um sistema de controle que o permite emular tal condição de carga, em regime permanente (HEERDT, 2013).

As CEAs podem ser encontradas na literatura com uma grande variedade de nomeações, tais como: Carga Eletrônica Ativa (*Active Electronic Load*) (SHE et al., 2008), (RAO; CHANDORKAR, 2008); Carga Ativa de Potência (*Active Power Load*); Carga Programável (*Programmable Load*) (NH RESEARCH, 2010); Simulador de Carga (*Load Simulator*, *Active Load Simulator*) (GUAN-CHYUN; JUNG-CHIEN, 1993); Emulador de Carga (*Load Emulator*); Reciclador de Energia (*Energy Recycler*) (TSAI, 2000) (MING-TSUNG; TSAI, 2000); Reciclador de Potência (*Power Recycler, Power Recycling*); Carga Regenerativa (*Regenerative Load*) (JU-WON et al., 2007); Resistor sem Perdas (*Loss-Free Resistor*) (VAZQUEZ et al., 1998); Carga Dinâmica (*Dynamic Load*) e Simulador Eletrônico Dinâmico de Carga (*Dynamic Electronic Load Simulator*) (MENG-YUEH et al., 1997).

Este trabalho tem como objetivo o desenvolvimento e a análise de uma carga eletrônica ativa não regenerativa, baseada em um circuito de fonte de corrente contínua controlada por tensão. O circuito proposto utiliza um potenciômetro, um amplificador operacional e um MOSFET, além de componentes passivos, como resistores e capacitores. Excursionando-se o potenciômetro, a corrente que é drenada do equipamento em teste é controlada e mantém-se constante mesmo quando a tensão de saída do equipamento em teste é alterada.

No circuito será empregado um amplificador operacional (AO) configurado como fonte de corrente controlada por tensão. O controle de tensão é ajustado por um divisor de tensão com potenciômetro, conectado à entrada não inversora do AO. Além disso, o MOSFET é inserido na malha de realimentação negativa do AO, de modo a equilibrar a diferença de potencial entre a tensão de saída do conversor de potência e a resistência de carga. Dessa forma, a resistência de carga passa a replicar a diferença de potencial elétrico do divisor de tensão, garantindo que a corrente na carga siga a tensão na entrada não inversora do AO. A Figura 1 ilustra o circuito esquemático do conversor proposto.

Figura 1 – Circuito proposto.

Fonte: Autoria própria.

Além de validar a eficiência do circuito, este estudo aborda as limitações da carga ativa, como a dissipação térmica em correntes mais altas, sugere possíveis melhorias para otimizar seu desempenho e demonstra a aplicação dessa ferramenta no projeto e teste de conversores CC-CC e outras fontes de tensão contínua, que é o foco principal do projeto.

2 – DESENVOLVIMENTO

A Figura 2 ilustra o circuito esquemático implementado no Eagle CadSoft[@].

O circuito apresentando necessita de uma alimentação de 15 Vcc aplicada no resistor R14 para funcionar, que pode ser fornecida por uma fonte de bancada. Também é possível estabelecer essa tensão a partir da própria fonte de tensão contínua em teste ao implementar um regulador shunt com diodos Zener, grampeando a tensão que chega ao potenciômetro. O ponto de alimentação de 24Vcc é o ponto onde se conecta o equipamento eletrônico em teste. Será possível variar a corrente drenada desse equipamento sem alterar a tensão que ele fornece, para diferentes níveis de tensões aplicadas nesse ponto.

A carga do circuito é composta pelas dez resistências em paralelo (R3 a. R12 = Ro) que estão conectadas ao GND.

Fonte: Autoria própria.

O potenciômetro do circuito ajusta a tensão da entrada não-inversora do amplificador operacional, chamada Vpot. O amplificador operacional está em uma configuração de realimentação negativa que, pela propriedade do curto-circuito virtual nas suas entradas, faz com que a tensão na entrada não-inversora (Vpot) apareça sobre a carga. Pode-se considerar que a queda de tensão em R2 seja desprezível devido à baixa corrente. Portanto, como existe uma tensão sobre uma resistência fixa, a corrente estará sendo imposta na saída do circuito. O valor dessa corrente é calculado por:

Icarga = Vpot / Rcarga. (2)

Os MOSFETs possuem o papel de conduzir a corrente Icarga e drená-la da alimentação do equipamento em teste. Eles devem conseguir suprir a necessidade de condução de corrente da aplicação. Para isso, foi colocado três MOSFETs em paralelo, a fim de aumentar a capacidade de condução e diminuir a temperatura na chave, também possibilitando a aplicação de um dissipador de calor de maior dimensão. Esse é um detalhe importante pois uma corrente constante passando por MOSFET na região ôhmica dissipará uma potência térmica considerável. No circuito esquemático o modelo dos MOSFETs utilizado inicialmente foi o IRF1404, porém, como a tensão de threshold (Vgs) é de 2 a 4V, ele foi substituído pelo IRLZ440N, com Vgs de 1 a 2V, praticamente a metade. Isso permite uma melhor operação para baixas correntes de carga.

A configuração da Placa de Circuito Impresso (PCI) e sua construção é apresentada a seguir:

Figura 3 – Roteamento da placa (vista superior).

Fonte: Autoria própria.

Fonte: Autoria própria.

3 – METODOLOGIA

Equipamentos utilizados:

- Fonte de corrente controlada por tensão:

- Amplificador operacional: LM741;
- Chave MOSFET: IRF1404 e IRLZ44N (3 unidades de cada);

- Resistências: Para a carga há dez resistências de 10Ω e 10W, obtendo 1Ω e 100Wcom associação em paralelo. Além dessas, no circuito tem-se R1 = 1k, R2 = 1k, R14 = 4k7;

- Potenciômetro: 10kΩ (Trimpot);
- Capacitores: Dois capacitores eletrolíticos de 100nF e dois cerâmicos de 10µF;
- Dissipador de calor;
- Duas fontes de bancada com dois canais;
- Osciloscópio;
- Termovisor digital infravermelho.

Procedimentos:

Conecta-se um canal da fonte de bancada com 15V no ponto indicado na placa e outro canal com 12V no ponto indicado como "24V" na placa, este canal representa o equipamento em teste. O motivo de não se conectar 24V inicialmente é que o circuito pode apresentar aquecimento para este nível de tensão. Para este caso, devido a aumentos de temperatura nas chaves MOSFET durante o experimento, a tensão do equipamento em teste estará será 12V. Quanto maior for essa tensão, maior a tensão entre dreno e source (Vds), portanto maior a dissipação de potência na chave.

O osciloscópio, que possui dois canais, mede a tensão Vpot (tensão de controle) e a tensão na carga. Como a resistência da carga é 1Ω , a corrente na carga, ou Ids, corrente da chave de dreno-source, será numericamente igual à tensão medida na carga.

Ao variar o potenciômetro, a tensão Vpot varia de 0,2V até 8,2V. As varíaveis de interesse Vpot e Ids (Icarga) são observadas com o osciloscópio.

4 – SIMULAÇÃO

Em software, o circuito foi simulado e os seguintes resultados foram obtidos:

Pot (%)	Vpot [V]	Icarga [A]	Vds [V]	Vgs [V]	Pmosfet [W]	Pcarga [W]		
0	1,02 µ	893,21m	11.99	1.92	0.01	0.00		
5	510,18 m	511,1m	11.49	2.07	5.87	0.26		
10	1.02	1.02	10.98	2.14	11.20	1.04		
15	1.53	1.53	10.47	2.19	16.02	2.34		
20	2.04	2.04	9.96	2.24	20.32	4.16		
25	2.55	2.55	9.45	2.28	24.10	6.50		
30	3.06	3.06	8.94	2.32	27.36	9.36		
35	3.57	3.57	8.43	2.35	30.10	12.74		
40	4.08	4.08	7.92	2.39	32.31	16.65		
45	4.59	4.59	7.41	2.18	34.01	21.07		
50	5.1	5.1	6.9	2.45	35.19	26.01		
55	5.61	5.61	6.39	2.48	35.85	31.47		
60	6.12	6.12	5.88	2.5	35.99	37.45		
65	6.63	6.63	5.37	2.53	35.60	43.96		
70	7.14	7.14	4.86	2.56	34.70	50.98		
75	7.65	7.65	4.35	2.58	33.28	58.52		
80	8.16	8.16	3.84	2.61	31.33	66.59		
85	8.67	8.67	3.33	2.63	28.87	75.17		
90	9.18	9.19	2.82	2.65	25.92	84.46		
95	9.69	9.69	2.31	2.68	22.38	93.90		
100	10.2	10.21	1.8	2.7	18.38	104.24		
Fonte: Autoria própria								

Tabela 2 – Resultados simulacionais.

Fonte: Autoria própria.

Na simulação é possível visualizar a linearidade do controle da corrente da carga, variando de 893,21mA até 10,21A.

5 – RESULTADOS EXPERIMENTAIS

Em um primeiro momento, os seguintes resultados foram obtidos:

Vpot [V]	Icarga [A]	Vds [V]	Pmosfet [W]	Pcarga [W]
0,24	0,03	11,76	0,35	0,0072
0,40	0,13	11,60	1,51	0,0520
0,64	0,38	11,36	4,32	0,2432
0,80	0,55	11,20	6,16	0,4400
1,04	0,81	10,96	8,88	0,8424
1,20	0,96	10,80	10,37	1,1520
1,44	1,20	10,56	12,67	1,7280
1,60	1,37	10,40	14,25	2,1920
1,84	1,57	10,16	15,95	2,8888
2,00	1,75	10,00	17,50	3,5000

Tabela 2 – Resultados experimentais (sem ventilação forçada).

2,24	1,96	9,76	19,13	4,3904			
2,40	2,18	9,60	20,93	5,2320			
2,64	2,40	9,36	22,46	6,3360			
2,80	2,55	9,20	23,46	7,1400			
3,04	2,82	8,96	25,27	8,5728			
3,20	2,97	8,80	26,16	9,5040			
3,36	3,14	8,64	27,13	10,5504			
Easta Autoria méruia							

Fonte: Autoria própria.

Observa-se que houve linearidade da corrente na carga em relação à tensão controlada pelo potenciômetro, com uma pequena diferença entre os valores simulados para o intervalo experimentado. A medição foi feita somente até Vpot = 3,36V e Icarga = 3,14 A, pois a partir de 3,2V os MOSFETs e as resistências da carga já começavam a atingir uma temperatura consideravelmente alta (45,8 e 51,4 °C), como mostra a figura 8.

Figura 6 – Medições de temperatura.

(a)

(b)

Fonte: Autoria própria.

Um dissipador de calor sobre as resistências e dois ventiladores foram adicionados para diminuir a temperatura nos componentes e aumentar o intervalo de operação do circuito.

Figura 7 – Montagem do circuito com ventilação forçada (vistas).

(d) (e)

Fonte: Autoria própria.

Com a ventilação forçada, novos testes foram realizados:

Vpot [V]	Icarga [A]	Vpot [V]	Icarga [A]	Vpot [V]	Icarga [A]
0,20	0,06	1,04	0,90	3,16	3,00
0,24	0,10	1,08	0,95	3,24	3,10
0,24	0,12	1,12	1,00	3,32	3,20
0,28	0,15	1,24	1,10	3,44	3,30
0,32	0,18	1,32	1,20	3,56	3,40
0,36	0,21	1,44	1,30	3,64	3,50
0,40	0,26	1,52	1,40	3,72	3,60
0,44	0,28	1,64	1,50	3,84	3,70
0,44	0,30	1,76	1,60	3,96	3,80
0,48	0,32	1,84	1,70	4,04	3,90
0,52	0,40	1,92	1,80	4,12	4,00
0,60	0,45	2,04	1,90	4,24	4,10
0,64	0,48	2,12	2,00	4,32	4,20
0,68	0,55	2,24	2,10	4,44	4,30
0,72	0,58	2,36	2,20	4,56	4,40
0,76	0,63	2,44	2,30	4,64	4,50
0,80	0,68	2,56	2,40	4,80	4,60
0,84	0,70	2,64	2,50	4,96	4,70

Tabela 3 – Resultad	os experimentais	(com ventila	cão forcada).
I ubelu e Rebulluu	so experimentals	(com ventina	çuv ivi çuuu).

0,88	0,74	2,72	2,60	5,08	4,80
0,92	0,76	2,84	2,70	5,24	4,90
0,96	0,80	2,92	2,80	5,2	6,71
1,00	0,85	3,04	2,90		

Fonte: Autoria própria.

Ao tentar coletar novamente os dados após a aplicação de ventilação forçada, os valores obtidos saíram do padrão esperado ao alcançar Vpot = 5,2V. Após investigação, constatou-se que uma das três chaves MOSFET queimou durante o teste. A corrente na carga para essa tensão era de 4,9A, resultando em uma corrente de 4,9/3 = 1,63A em cada MOSFET. Segundo o datasheet do MOSFET IRLZ44N, a corrente máxima contínua entre dreno e source é de 47A a 25 °C. Apesar de a corrente estar em um nível relativamente baixo, fatores como a alta tensão entre dreno e source e o aumento de temperatura contribuíram para a falha do componente.

Para mitigar este problema, uma das soluções avaliadas seria aumentar a resistência equivalente da associação de resistores na carga de 1 ohm para 2 ohms, por exemplo, e dobrar a tensão de alimentação e da entrada não inversora do AO para resultar em uma menor diferença de potencial entre o dreno e o source do MOSFET, reduzindo o estresse térmico sobre o componente.

Outra alternativa é realizar o dimensionamento adequado dos dissipadores e melhorar o acoplamento térmico. Para uma dissipação de calor eficiente, é essencial que o dissipador tenha uma resistência térmica suficientemente baixa, dissipadores com aletas e ventilação ativa, assim como o uso de pasta térmica de alta qualidade. Além disso, ajustar a pressão de montagem ajuda a maximizar a área de contato entre o MOSFET e o dissipador, garantindo uma transferência de calor mais eficiente e prevenindo o aquecimento excessivo dos componentes.

Por fim, outra possibilidade para proteger o sistema seria a redução da tensão de saída do equipamento em teste durante os ensaios, outra ação que amenizaria a tensão entre dreno e source dos MOSFETs, prolongando a vida útil dos componentes e evitando o superaquecimento. Essas medidas buscam garantir a segurança e a durabilidade dos componentes, minimizando o risco de queima dos MOSFETs em condições de operação mais elevadas.

A Figura 11 mostra uma comparação entre a simulação e os experimentos. Notase no gráfico que a ventilação forçada possibilitou medições com correntes mais elevadas em relação ao experimento realizado sem ventilação. No entanto, para se trabalhar com correntes acima de 5A é necessário a aplicação de soluções de mitigação da alta temperatura dissipada nos MOSFETs, que foram mencionadas acima.

Figura 8 – Gráfico - Comparação entre simulação e experimentos.

6 - CONCLUSÃO

A análise comparativa entre simulações e testes experimentais revelou que a carga ativa é capaz de operar na faixa de corrente de 0 até cerca de 4,5A, validando sua aplicação em testes de conversores CC-CC e outras fontes de tensão contínua. As medições obtidas mostraram uma boa linearidade entre a tensão de controle e a corrente na carga, corroborando a robustez do design proposto.

Embora a carga ativa tenha se mostrado eficiente, foram identificadas limitações, como a dissipação térmica nos componentes em correntes mais elevadas, o que demanda atenção na escolha de dispositivos e adaptações no circuito, considerando a corrente demandada para aplicação. A queima de um dos MOSFETs durante os testes destaca a importância de considerar a temperatura e as condições de operação para garantir a durabilidade dos componentes.

Futuras melhorias incluem a otimização do circuito para aumentar a capacidade de carga, visando expandir as aplicações da carga ativa em diferentes cenários de testes. Assim, a carga ativa proposta representa uma contribuição significativa para a área de eletrônica de potência, oferecendo uma solução eficaz e adaptável para o teste de equipamentos.

Referências

GUAN-CHYUN, H.; JUNG-CHIEN, L. **Design and implementation of an AC active load simulator circuit**. IEEE Transactions on Aerospace and Electronic Systems, v. 29, n. 1, p. 157-165, 1993.

HEERDT, Joselito Anastácio. **Carga eletrônica ativa trifásica**. 2013. 302 f. Tese (Doutorado em Engenharia Elétrica) - Universidade Federal de Santa Catarina, Florianópolis, Brasil.

JU-WON, B. et al. **50kVA Regenerative Active load for power test system**. In: EUROPEAN CONFERENCE ON POWER ELECTRONICS AND APPLICATIONS, 12., 2007, Aalborg, Denmark. Anais, Aalborg: IEEE, 2007. p. 1-8.

MALVINO, Albert P.; BATES, David J. **Eletrônica**. 8. ed. São Paulo: McGraw Hill Brasil, 2016. v. 2. 624 p.

MENG-YUEH, C. et al. **Design and implementation of a real-time lossless dynamic electronic load simulator**. In: ANNUAL IEEE POWER ELECTRONICS SPECIALISTS CONFERENCE - PESC '97, 28., 1997, St. Louis, USA. Anais, St. Louis: IEEE, 1997. p. 734-739.

MING-TSUNG, T.; TSAI, C. Energy recycling for electrical AC power source burnin test. IEEE Transactions on Industrial Electronics, v. 47, n. 4, p. 974-976, 2000.

NH RESEARCH, I. **Programmable AC & DC Electronic Loads**. Irvine, CA, 2010. Disponível em: http://www.nhresearch.com. Acesso em: 26 out. 2024.

RAO, Y. S.; CHANDORKAR, M. Electrical load emulation using power electronic converters. In: IEEE REGION 10 CONFERENCE - TENCON 2008, 2008, Hyderabad, India. Anais, Hyderabad: IEEE, 2008. p. 1-6.

SHE, X. et al. **AC electronic load and its application in power system simulation**. In: IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, 3., 2008, Singapore. Anais, Singapore: IEEE, 2008. p. 1685-1690.

TSAI, M. T. Comparative investigation of the energy recycler for power electronics burn-in test. IEE Proceedings - Electric Power Applications, v. 147, n. 3, p. 192-198, 2000.

VAZQUEZ, R. et al. **Implementation of a loss-free programmable AC load**. In: ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY - IECON '98, 24., 1998, Aachen, Alemanha. Anais, Aachen: IEEE, 1998. p. 630-635.

VILEFORT, Leandro Sousa; SILVA, Fábio Vincenzi Romualdo da; COELHO, Ernane Antônio Alves; FREITAS, Luiz Carlos de; VIEIRA JR, João Batista. **Conversor Boost Quadrático SR-ZVS-QRC PWM**. Eletrônica e Potência, Campo Grande, v. 17, n. 1, p. 393-400, dez. 2011/fev. 2012.